MA30253: Continuum Mechanics

In this paper the domain Q C R® denotes the initial configuration of a continuum, We
denote by ¢ = ¢(X,t), ¢ : Q2 x [0,T] — R3 a motion of the continuum and ; = ¢(Q, t)
denotes the image of the initial configuration at time ¢ (with Qo = Q).

X = (X1, X2, X3)T denote material coordinates in Q and x = (z1,2,73)T denote spatial
coordinates in €.

The Euler equations for the flow of an inviscid, incompressible fluid of constant density pg
are given by:
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where v = v(x,t) = (v;(x,t)) is the (spatial) velocity, P(x,¢) is the pressure and b(x, t)
is the body force per unit mass.

The conservation of mass condition then reduces to the incompressibility condition
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V.v =0 in Q. (2)

We denote the material time derivative by
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1. Consider a planar/laminar steady flow in R® in which the spatial velocity field is given
by
u(z1, 72)
v(x) = v(xl,xg)
0

is a solution of the Euler equations (1).

(i) Suppose further that the flow is incompressible and irrotational and derive the condi-
tions satisfied by the scalar functions v and v.

(ii) Define the corresponding complex velocity petential w(z) where z € C and, assuming
that u, v are continously differentiable, show that w(z) defines an analytic function on its
domain of definition.

(iii) What is the corresponding complex velocity potential ®(z) and stream function
¥(z1,22)? Show that the stream function is constant along streamlines of the flow.

(iv) Show that the real part of the complex contour integral

iw(z) dz

around a contour vy, parametrised as z(s) = z(s) + 1y(s), s € [a,b], is the circulation of
the flow around the contour.

(v) State Blasius Theorem for the force exerted by a flow on a body B immersed in the
flow. Use it to calculate the force on the unit disc (centre the origin) in the case when the
complex velocity potential is given by
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Q2. Let ¢(X,t), ¢ : Q x [0,00) — R3 be a motion of a continuum. Let pg(X) be the
density in the initial configuration at X € Q and p(x,t) the density in the configuration
at time £ at x € £, where Q; = ¢(Q, ) (and Q = Q).

(a) Define the corresponding spatial velocity field v(x,t) = (v;(x,t)) for x € Q4.

(b) Show that it follows from conservation of mass that

po(X)

p(X, t) = m, with x = ¢(X, t),

where D¢ denotes the material gradient matrix F'(X,t) = (%;:t)) .

(c) Prove that for any spatially defined function f(x,t), we have

ad_t ( /B ORI t)) dv = fB ol t)l%f(x t)dv

for any subdomain B; C €.

(d) Prove that the material gradient matrix F' satisfies

% F(X,t) = D(x, )F(X, 1), x = (X, 1),

where I'(x, t) = (I';;) = (a”i_) denotes the spatial velocity gradient.
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(e) Prove that

%(det(Dd)(X, t)) =det(D¢p (X, 1)) (V.v(x,t)), x=o(X,t),

and hence that an incompressible flow must correspond to a motion satisfying det D¢(X, t) =
1.



Q3. Consider an incompressible ideal fluid subject to a motion ¢ :  x [0, 7] — R3, with
corresponding (spatial) velocity field v(x,t) = (v;(x,t}) and constant density pp satisfying
(1), (2).

(a) The corresponding vorticity is defined by w(x,t) = V x v(x,t) for x € Q = ¢(Q, ).
(i) What is a vortex line?

(ii) Prove that vortex lines are transported by the flow.
(

You may assume Cauchy’s result that w(x,t)[,_gx,¢) = DP(X, t)wo(X) for all X € Q,
where wo(X) denotes the vorticity in the initial configuration at X € 0.)

(b) Define the corresponding spin tensor W and rate of stretch tensor S. Prove that if
v(x,t) satisfies (1) and (2), then

(i) tr S =0,
(ii) w; = €55 W; (Where €53, denotes the alternating symbol),

(iii) 2Wij = €ikjWk -

(iv) Suppose further that the spatial velocity gradient tensor I'(x,t) = (I'y;) = (g;’;) is

skew symmetric. Prove that
Dw 0
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(You may assume that the vorticity satisfies %“ti =Tw.)



4. Consider an incompressible ideal fluid subject to a motion ¢ : Q x [0,T] — R3, with
corresponding (spatial) velocity field v(x,t) = (v;(x,t)) and constant density po.

(a) Prove the vector identity
1 2 . .
(vV)v=wxv+ §V||v|| , where w = V X v is the vorticity .

(b) Show that the spin tensor W = 1 [I' — I'"] satisfies 2Wx = w x x, Vx € R3, where
Wi = €mnWnm, L'(%,t) = (Ty(x,1)) = (%;LU is the velocity gradient tensor and €;my,
is the alternating (permutation) symbol.

(c) By taking the curl of the linear momentum equations (1), show that

Dw
— =Tw.
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(You may assume that (V X (w x v) = (v.V)w — (w.V)v. )

(d) Show that
w(op(X,t),t) = F(X,Hhw(X,0) for X e

satisfies the equations in part (c), where

F(X,t) = (F(X, 1) = < g;;)

is the deformation gradient tensor.
(You may assume that 8—F%—)t(’—t) =T(x, ) F(X,t), x=¢(X,t).)

(e) In'the case that I is skew symmetric, prove that the material derivative of the vorticity
is zero. Interpret this result.



5 . In this question, A4 = {el,eg,e3},fi = {&,8,,83} are cartesian bases for R related
by & = gije; where Q = (g;;) € SO(3). There is a corresponding change of cartesian
coordinates Xi — X,; = Qik:Xk:~

(a) (i) What is meant by saying that T;, . ;,, where iy, ..., i, can take the values 1,2, 3,
are the components of a cartesian tensor T of order n (i.e., a CTn) in the basis

A?

(ii) What is meant by saying that T;, ;. are components of an isotropic
CTn?

(iii) Define the alternating symbol €;;y.

b) Suppose that S;ix = €k, 4,5,k = 1,2,3. Show that S;;; are the components of an
J g J
isotropic CT3.

(c) Show that the triple scalar product, defined by

X1 Xo X3
X YxZ)= XiY;Z, =1 Y1 Y2 Yz |,
Z, Zo Zs

where X = X;e;, Y = Yie;, Z = Z;e; € R3, defines a CTO.

(d) Suppose that S;, i = 1,2,3, have the property that S,T; is a CTO for any cartesian
tensor T of order 1 with components 7;. Prove that S; are the components of a
CTi.

Hence prove that (Y x Z); = €;;4Y;Z) are components of a CT1 for any Y,Z €
R3.



6. In this question, a change of cartesian coordinates from X = (X1, Xo, X3)T to
X = (X1, X2, X3)T corresponds to X; — X; = qix X}, for some Q = (g;;) € SO(3).

(a) What is meant by saying that T, ;,, where the indices 4, ..., 1, can take the values
1,2,3, are the components of a CTn (i.e., of a cartesian tensor of order n)?

(b) Define what is meant by contraction of the components of a CTn. Show that
contraction of the components of a CTn gives the components of a CT(n-2).

(¢) Suppose that Tj, . ;, are functions of X, X9, X3 and are components of a CTn. Show
that P

= _a‘Xﬁ-kr—Fil...’in
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define the components of a CT(n+1).
(d) Let ¢(X3, X2, X3) be a scalar-valued function. Prove that the Laplacian of ¢,

2 2 2
A¢=a¢2+6¢ A

defines a CTO.

e) Suppose that S;i., 4,7,k = 1,2,3, have the property that for any CT1 with
J
compouents T;,

Uij = SijpTk
are the elements of a CT2. Prove that Sy are the elements of a CT3.



“F. Let v(x,t) = (vi(x,t)) be a given spatial velocity field.

(a)

(b)

()

(d)

Define the corresponding rate of stretch tensor S and spin tensor W and show that
=8+ W, whereT = ([};;), Ty = 8.'1: is the velocity gradient tensor.

If v(x,t) satisfies the E\e~ equations, show, by differentiating (‘) with
respect to z;, that the corresponding velocity gradient tensor I satisfies

DI, 1 8%p
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Hence prove that the rate of stretch tensor S and spin tensor W satisfy

DSZ] 92 9 L ]. 32P
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and DW
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If So, Wy are constant tensors, with Sy symmetric and Wy skew-symmetric, show
that

v(x) = Sox + Wox
gives rise to a solution of the equations in part (b) provided that SoeWy+ WySp = 0.
Find the corresponding pressure.
In the case vi(x,t) = —%eijkbjxk, where b = (b;) € R?, calculate the corresponding
Sp and Wy and describe the associated motion.

(You may assume that if W € M3*3 ig skew-symmetric, then Q(t) = e%*, t ¢ R
satisfies Q(t) € SO(3) for all t and Q(0) = I.)



